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We extend the recent work on Bragg scattering of water waves by one-dimensional 
parallel bars of sinusoidal profile to two-dimensional, doubly sinusoidal bed waves. 
The resonance condition governing the phase matching between the incident, 
scattered and bed waves is now more complicated and a much richer variety of 
resonant reflection can occur. In particular, for one normally incident wave there can 
be two reflected waves forming a standing wave in the transverse direction. Solutions 
for a wide strip of bed waves are discussed for incident water waves satisfying 
approximately the Bragg resonance condition. Modifications for a two-dimensional 
array of hemispheroids are also given. Possible application to the design of 
submerged breakwaters is suggested. 

1. Introduction 
During the past decade, the seabed a t  the Ekofisk oil field in the North Sea has 

been subsiding a t  the rate of 40 cm per year (MaCabe 1986). Together with the local 
waves, this subsidence endangers the drilling platforms during storms. In the past 
few years, Phillips Petroleum Go. of Norway considered several remedial measures : 
raising the deck of the platforms, recharging the oil reservoirs with gas and water, or 
constructing large submerged breakwaters against the prevailing wind waves. The 
first option was finally chosen and the platforms have now been raised by 6 m. 

As a technical challenge, it is worthwhile to examine further the third option and 
consider an alternative to conventional monolithic breakwaters so as to be better 
prepared for comparable needs elsewhere. Although the technology of construction 
is well known, there are disadvantages in putting a large breakwater in some sites. 
First, large breakwaters transmit large cyclic loads to the supporting soil. 
Liquefaction, which is a complex effect in soils, can occur to cause foundation failure. 
Also, in offshore oil fields, complex networks of pipelines are commonly laid on the 
seabed. A large structure may interfere with the most economical layout and 
maintenance of pipelines. These difficulties can be significantly reduced if a two- 
dimensional array of small breakwaters is used instead. In  the design of large coastal 
farms for artificial breeding of fishes, submerged and unobtrusive structures of small 
dimensions may also be economically more effective and aesthetically appealing. 

Recent studies on the Bragg scattering by periodically spaced sand-bars indicate 
that many small bars can be as effective a breakwater as a single massive structure 
(Davies & Heathershaw 1984; Mitra & Greenberg 1984; Mei 1985 which contains 
earlier references; Kirby 1986; Dalrymple & Kirby 1986; Hara & Mei 1987). It is 
therefore interesting to examine further the effectiveness of a two-dimensional 
periodic array of breakwaters. To this end much basic physics can be learned from 
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the study of a doubly sinusoidal seabed. For this geometry some results have been 
reported by Kirby (1986) based on the numerical solution of an extended mild-slope 
equation. However, he only performed computations for a strip of bed waves limited 
in extent in the direction transverse to the incoming waves. In  this paper, we shall 
attempt to examine analytically the details of Bragg resonance over a doubly 
sinusoidal bed of arbitrary horizontal extent, angle of incidence and constant mean 
depth. The geometrical optics approximation previously used by Mei will be 
extended. New energy conservation laws will be derived. The results are then 
extended to an array of hemispheroids. Extension of the asymptotic equation to 
slowly varying mean depth will be given in Appendix A. 

2. Linearized formulation 
As was shown in Mei (1985), the most important physical aspects of Bragg 

scattering can be learned by assuming the mean depth to be constant; inclusion of 
bottom slope modifies the results only in quantitative way. We shall limit our 
analysis to constant mean depth which is assumed to be comparable in order of 
magnitude to the characteristic wavelength. Extension to a slowly varying mean 
depth will be made in an Appendix. The linearized governing equations are 

Vz$++z, = 0, - h + d  < z < 0 

in the fluid: 

&+g#,  = 0, z = 0 

on the free surface ; and 
+z = EV#*V&, z = - h + d  

on the seabed. The small parameter E is a measure of the steepness of the bed wave 
and E&(x, y)  is the height of the bed wave above the mean bottom. Following Mei 
(1985), we expect that the uniformly valid description of Bragg resonance requires 
the consideration of spatial and time ranges much longer than the wave length and 
wave period. Hence we introduce 

x1 = EX, y1 = sy ,  t, = E t .  (2.4) 

Assuming the multiple-scale expansion 

and denoting 

we obtain the following set of perturbation equations : At O ( E )  

Vz#'"+$k~) = 0, - h  < z < 0, 

Cjp + g p  = 0, z = 0, 

#?) = 0, z = - h ,  
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At O(s2)  
V2$(2) + 4:;) = - 2 v .  v ,  p, - h < 2 < 0, (2.10) 

#it“’ + g $ q )  = - 2$p 1 ’  z = 0, (2.11) 

$2) = v .  (SV$( l ) ) ,  z = - h .  (2.12) 

The formal soiution to the first-order problem may be written 

+(I)  = p eiS+ + r eiS- + C . C . ,  (2.13) 

where S+ and S- denote respectively the phases of incident and reflected waves. The 
frequency o of both wavetrains is defined by 

8: = s- t = -o. (2.14) 

The wavenumber vectors of the two waves satisfy 

cos e 
] sine ’ 

vx+ = k+ = [i] = k [  (2.15) 

with k = (aZ++P2)i = Ik+( = Ik-1 (2.16) 

Note that k+ is given in both magnitude and direction while the direction of k- under 
the resonance condition is still to be found. The potential amplitudes of these waves 
are 

rk = _ _  ig cosh k(z  + h)  [ ;] 
o coshkh , (2.17) 

with o2 = gk tanh kh. (2.18) 

The amplitudes A and B are yet unknown. With these results (2.10) and (2.11) 
become 

-h < x < 0, (2.19) V2$(”+$g) = - { 2 k + . V l T Y  eisf+2k-.Vll-  eis-}+c.c., 

+g#j2) = 2io (I+ t l  eiS+ +GI eiS-)+c.c., z = 0. (2.20) 

Let the bed wave be described by 

6 = D cos mx cos ny 
1. (2.21) = p ( e i ( m z + n y )  + ei(mz-ny) + e-i(mz-ny) + e-i(mz+ny) 

Each term above may be regarded as a bed wave with zero frequency. The forcing 
term on the right-hand side of (2.12) is then given by 
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3. Condition for Bragg resonance 
When any term in the first set of curly brackets of (2.22) has the phase of a free 

wave solution to the first-order problem, Bragg resonance occurs. The phases of the 
products are 

X; = (a-m)x+(P-n)y-wt ,  S,  = (a+m)x+(p -n)y -wt ,  (3 .1~2,  b )  

8; = ( a + m ) + ( p + n ) y - o t ,  8; = (a-m)x+(P+n)y-wt .  ( 3 . k  d )  

The corresponding wavenumber vectors are 

k ; = ( a V m ) ,  kg=( a + m  ), k ; = (  a + m  ),  k ; = ( p + n ) .  a - m  (3.2)  
P-n P-n P+n 

Clearly when any one of these vectors has magnitude k, that is when any of the 
following relations holds : 

(a -m)2+(p -n)2  = k2,  ( a+m)2+(P-n)2  = k2 ,  (3 .3~2,  b )  

(a+m)2+(p+n)2  = k2, (a-m)2+(/3+n)2 = k 2 ,  (3 .3c,  d )  

resonance will occur. The wavenumber vector of the resonantly scattered wave will 
be denoted by k- .  

In the Cartesian plane with m, n as the axes, relations (3 .3)  describe four circles, 
C,, C,, C, and C,, of radius k ,  centred respectively at (a, p), ( - a ,  p) (-a, -p) and 
(a ,  -p). Thus for a given k+ = (a, p), the bed wavenumber vector must end on the 
circle of radius k centred at the tip of k f ,  as shown in figure 1. Referring to figure 1 ,  
any of the four points 

represents the same bed wave. If (3 .3~2)  is satisfied (hence ( 3 . 3 b - d )  are not) then the 
resonantly scattered wave is given by the vector from P, to A ,  or equivalently by OQ 
which is parallel to  P, A .  As the topography point PI can be anywhere on C,, all 
directions are possible for the scattered wave. Alternatively, we can also consider any 
other pi, say P4. Then we must insist that ( 3 . 3 4  be satisfied. The resonantly reflected 
wavenumber is still the same k- .  As a result, it is sufficient to take just one of the four 
circles, say C,. The reflected wave phase S- is then given by ( 3 . 1 ~ ) .  

For P, on the circle C, with 0 d 8 < in, the incident wave has a component in 
the positive x-direction. For -$I < q+ < in, the scattered wave is directed to the 
negative x-direction, partially similar to reflection from long bars parallel to the 
y-axis. Otherwise, for +x d + d ix, the scattered wave is directed to the positive 
x-direction, partially similar to reflection from long bars parallel to the x-axis. 
The special case of $ = -8 corresponds to long bars parallel to the y-axis, if 
-in ,< $ < in; while $ = x -8 corresponds to long bars parallel to the x-axis, if 

Let us denote the direction of the incident wave with respect to the x-axis by 8, 
the angle between the incident and reflected waves by p, and the angle between AP 
and the horizontal axis by +. All three angles are taken to be positive if 
counterclockwise. From now on, we shall refer to + as the topography angle as it 
characterizes the bed waves via 

ix < $ d in. 

m = k (cosB+eosq+), n = k(sin0+sinq+). (3 .4)  
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T "  

FIQURE 1. Resonance locus, incidence angle = 0, topography angle = $. 

From figure 1, we infer that 

k+-k-  = Jk'J Jk-J COST = k2 COSV, (3.5) 

where q = $-e-n. (3.6) 

Henceforth, these three angles will be used interchangeably to provide the most 
compact expressions. Finally we can write 

V.(SVqW) = -aDk+-k-(Z- e i s + + P  eis-)+c.c.+non-resonating terms, z = -h.  
(3.7) 

4. Evolution equations for oblique incidence 
Substituting (3.7) into (2.12) and assuming 

#(2) = -iy+ eiS+-iiy- eiS-+c,c, . 
we get from (2.19), (2.20) and (3.5) 

0 2  w 

9 9 
yf - -y+ = -2-G1+c.c., z = 0, (4.3) 

7: = -$Dk2 C O S ~ I -  + c.c. ,  z = - h. (4.4) 

A similar set of equations can be obtained for y- by interchanging the superscripts 
+ and -. Solvability for y+ and y- then gives a set of equations coupling A and 
B :  

A,, + Ci - V, A = $isZ0 cos qB, (4.5a) 

Btl + C; - V, B = $isZo cos plA . (4.5b) 
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The coupling constant 9, is proportional to the bed-wave 
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1 kwD 
2sinh2kh 

0 = -  

and has the dimension of frequency. It was pointed out 

slope 

(4.6) 

by Mei (1985) that, for 
parallel bars, 0, defines a frequency band of detuning beyond which Bragg resonance 
ceases to be effective. The group velocities are given by 

with 

sin ( O + q )  
kt 

g k  c; = c -, c; = c, 14.7) 

Formally (4.5a, b )  are identical to those of Mei (1985) for one-dimensional bars 
parallel to the y-axis (n = 0) except for an extra factor o f i  on the right-hand side of 
(4.5a, b) .  To reconcile this, we note that for n = 0 the tip of the bed-wave vector must 
be (2a, 0)  which is on both circles C, and C,. In  (2.22), both terms in the second line 
contribute equally to  the resonantly reflected waves with phase S-. Thus we must 
multiply the right-hand sides of (4.5a, b )  by 2;  this removes the apparent 
discrepancy. 

5. Evolution equations for normal incidence 
When incidence angle O = 0, the 

C,, described by 
c, : 
c, : 

Since both (m, n) and (m, -n) lie 

four circles in figure 1 collapse into two: C, and 

(k-m),+n2 = k2, (5.la) 

(k+m)'+n2 = k2. (5.lb) 

on the circle C,, there are two reflected waves 
resonated, as shown in figure 2. Because of symmetry with respect to the m-axis, the 
sum of the reflected waves is progressive in the negative x-direction but is standing 
in the y-direction. Thus, three waves with the phases 

S+= kx-wt ,  S; = (k-mm)x-ny-ut, (5.2a, b)  
AS, = (k-m)x+ny-wt ( 5 . 2 ~ )  

resonate each other through the bed wave. The corresponding wavenumber vectors 
are respectively 

k i= ( f ) ,  k ; = (  k-m - n ) ,  k ; = (  k-m ). 
Let the first-order potential be of the form 

= p cis+ + cis; + eish + c.c., 

where 
ig cosh k(z+ h) 
w coshkh p=-- A ,  

(5.3) 

(5.4) 

(5.5a) 

(5.5b) 
ig coshk(z+h) 
w coshkh 4 , s '  

- _ _  
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FIGURE 2. Resonance locus, normal incidence with typical standing waves in the y-direction. 

With this, the forcing term for the second-order potential is 

Clearly, the underlined terms have, in sequence, the phases S;, S;, S+ and S+. 
Equation (5.6) can be rewritten 

V - (SV#(')) = - iDk(k - m) {Iy (cis; + cis- 2 ) + (c + cis+) + c.c. + non-resonating 

terms, z = -h .  (5.7) 
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Solvability of the second-order problem for qV2) then leads to  the evolution 
equations 

A t l + C L * V , A  = $ 2 ,  cosp7(B1+B,), ( 5 . 8 ~ )  

(5.8b) 

( 5 . 8 ~ )  

Bltl + Ci1 - V, B, = $2, cos p7A , 

B2tl + C&.V, B, = &2, cosp7A. 

The group velocities Ci, Cp, and Cp, now have the following components: 

(5 .9a)  

(5.9b) 

(5.9c) 

where $ is the topography angle defined in figure 2. Since p7 = $-n for normal 
incidence, (5 .8a-  c )  become 

Atl+C,Axl  = -+ao COS$(B,+B,), ( 5 . 1 0 ~ )  

(5.10b) 

(5.10 c )  

Blt1-Cg cos$BlX1-C, sin$B,,, = -iiQo cos$A, 

BZtl - C ,  cos $B2xl + C, sin $BzVl = -$Q, cos$A. 

This set of three coupled equations can be the basis for treating essentially normal 
incidence with a small inclination away from the x-axis or with a narrow angular 
spread. For strictly normal incidence, there is no dependence on y,. The two reflected 
waves must have identical envelopes, 

B = B, = B,, (5.11) 

so that (5.10a-e) are further reduced to 

Atl  +C, A,, = -in, cos $B, 

B,, -C, cos $Bxl = - ia, cos $A. 

( 5 . 1 2 ~ )  

(5.12b) 

In  the limit of one-dimensional bars, n = 0 so that $ = 0. The resulting equations 

In summary, the regions of validity of (4.5a, b)  and (5.12a, 6 )  are complementary 
again agree with Mei (1985). 

and do not overlap. Slight detuning is permitted in both of them. 

6. Oblique incidence on a wide strip of bed waves 
6.1. Solution to the boundary-value problem 

Assume the doubly periodic bed waves to  be confined in the strip 0 < x1 < L where 
kL = O ( l / s ) .  An incident wavetrain arrives from x = -a a t  an angle 8 with the 
wavenumber 

k = k++EK. (6.1) 
A non-zero K means that the incident wave is slightly detuned from perfect 
resonance, i.e. from k+, by an amount sK. The corresponding detuning frequency is 
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€52 with B = 0, K and will be one of the key parameters of the problem. The solutions 
in various regions may be formally written for x1 < 0:  

(6.2a) 

(6.2b) 

( 6 . 3 ~ )  

A = A ,  exp {X(x1 cos 8 + y1 sin 8 )  - iQt,} ; 

B = B, exp {iK( - x1 cos 8 + y1 sin 8 )  - iat,} ; 

A = A l  exp{iK[(x,-L) cos8+yl sin8]-iS2tl}, 
for x1 3 L :  

B = O ;  
and over the bars, 0 < x, < L :  

A = A ,  T(x,)  exp {Xy, sin 8- iBnt,}, 

B = A ,  R(x,) exp {iKy, sin 8- iQt,}. 

(6.3b) 

( 6 . 4 ~ )  

(6.4b) 

Upon substituting (6.4a, b )  in (4.5a, b ) ,  we arrive a t  the following first-order matrix 
differential equation : 

where 

M = [  - 2 1 

d X  52,L - - i-MX, - 
d t  c, 
X =  

52 
cos 8- 

cos p, 
52, 

cos (O+p,)  

1 cosp, 
2 case 
_ _ _  

1 -sin 8 sin (6't-w) 1 52 - 
QO 

and 6 = X J L .  (6.8) 

Although (6.5) can also be expressed as a second-order equation for T or R, this 
matrix form is convenient for extensions in $7.  Following standard arguments, we 
look for homogeneous solutions of the following form : 

Equation (6.5) results in 
[M - A l l  X, 0. (6.10) 

Thus h is an eigenvalue which is obtained by setting the coefficient determinant to 
zero : 

cos28{l-sinOsin(B+p,)}-~cos2p, = O .  (6.11) 

The nature of the eigenvalues is dictated by the characteristic discriminant : 

A = - c o s ~ ~ e ( i + c o s ~ ~ - e ~ ~ ~ - c o ~ ~ ~ ~ - ~ ~  ~ o s ~ c ~ s ~  (6.12) 

after using (3.6). The angle of incidence 8 can be restricted to [0, in], i.e. cos8 2 0, 
without any loss of generality. Clearly, the sign of A depends on that of cos$. Let 
us first assume that the topography is such that cos+ < 0, i.e. in < $ < 2. The 

(3 

3 FLM 192 
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discriminant A is then always positive, implying real eigenvalues and an oscillatory 
behaviour for R and T, regardless of the magnitude of the detuning 52/Q0. In  view 
of (3.6), the angle of k-, 8+q, is now less than in in absolute value. Thus, the 
scattered wave R is right-going as a result of reflection from a topography which acts 
almost like long-crested bars parallel to the x-axis. 

We next consider cos@ > 0, i.e. -in < @ <an. For a given incidence 6’ and 
topography @, the sign of A depends on whether the detuning factor Q/Q, is greater 
or less than the normalized threshold or cutoff frequency: 

We define 

and 

to be super ritical and sub 

(6.13) 

(6.14 a) 

(6.14b) 

ritical detuning respectively. For supercritical (subcritical) 
detuning, A 2 0 ( A  < 0) and R and T are oscillatory (monotonic) in 6. The direction 
of k- now has a leftward component and the reflection is partially similar to that 
from long bars parallel to the x-axis. 

From (6.10), we solve for the eigenvector corresponding to hi:  

1 cosp, 52 x; = [a,<, azt] = 
2 c0s6’Q0 

(6.15) 

The general solution for (6.5) is then 

It is shown in Appendix B that continuity of pressure and normal velocity implies 
T(0)  = 1 and R(1) = 0. From these relations, we obtain the following non- 
homogeneous linear system for the amplitudes p 1  and p2 : 

(6.17) 

which is solved easily. In  the supercritical case, the eigenvalues are 

(6.18) 
cosB(Q/Q,) (1-cosq+2 cos6’ cos (O+q) )+Af  

2 cos 6’ cos (6’ +q) 
hl = 

Introducing for brevity : 

A$ ~ - c o s P , + ~  cos6 C O S ( ~ + ~ )  (6.19a, b )  
S =  z =  

2 cose cos(O+q)’ 2 cos (O+q) 

we find the reflection and transmission coefficients 
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and 

T(') = 
S cos [S(Qo L( 1 - tJ/C,)] + i(Q/Q,) (Z- cos 0) sin [#(a, L( 1 - ()/C,)] 

s cos [S(SZ, L/C,)I + i ( ~ / ~ , )  (2- cos e)  sin [#(a, L/C,)I 
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x exp iZ-c . (6.20b) { [ ? I 1 1  
In particular, the reflection intensity along the incident edge of the bar strip is 

and the transmission intensity along the downwave edge is 

(6.21 b )  
S2 

= 8'- [cos2p,/4 cos 0 cos (8+p,)] sin2 [s(a, L / c g ) ]  ' 

For the subcritical case, we simply replace sin (S( - ))  and cos (S( . )) respectively by 
sinh (IXl( .)) and cosh (IXl( .)). It can be verified that the scattering coefficients are 
continuous across the cutoff frequency and are equal to 

and 
1 

= 1 - [cos2p,/4 cos0 c b  (0+p,)] (a, L/C,)2. 

( 6 . 2 2 ~ )  

(6.226) 

6.2. An energy identity 

We first post-multiply the transpose of (6.5) by the complex conjugate of X, P, pre- 
multiply the conjugate of (6.5) by the transpose of X, XT, and then add the two 
resulting scalar equations : 

The matrix [MT- M I  is easily evaluated from (6.7) : 

T 1 1 0 1  
M - M = $ c o s ~ ,  (COS (0 +p,) -a) [ - 1 01 . 

It follows from (6.23) that 

(6.24) 

(6.25) 

Note that both left- and right-hand sides are real. To evaluate the right-hand side, 
we multiply both sides of ( 6 . 5 ~ )  by 

to get 

cosO(TR*-RT*) 

ITI2. (6.26) 
+ i i L -  52 Lcosp, 

c, cos0 cos p, 
3-2 
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Taking only the real part, we find 
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(6.27) 

Since from (6.5a) (pg+~s) = i cos8--(TR*-RT*) 52,L 52 
c, Qo 

it  follows from (6.27) that 

Finally, upon combining (6.25) and (6 .29) ,  we obtain 

(6.28) 

(6.29) 

(6.30) 

Integrating (6.30) from ( = 0 to < = 1 and using the boundary conditions, we find 

cos (8+q) (R(0)(2+ Cose (1 - (T(1)(2) = 0. (6.31) 

Thus wave energy flux in the x-direction is conserved. With some algebra, it can be 
checked that (6.21 a, b )  satisfies this energy identity. 

6.3. Numericul results 

In figure 3 (a) we first present the normalized cutoff frequency as a function of 8 and 
@ according to (6.13). Along the line 8 = in, corresponding to glancing incidence, it 
is singular (the plot has been truncated a t  the height equal to 2) .  Along the straight 
line I+? = 8 = -in, the cutoff frequency is zero, hence (6.14a) holds for all Q/Q,. The 
solution is thus always supercritical. A sample plot of the reflection coefficient is 
shown in figure 3 ( b )  as a function of 52/52, and xl/L for 8 = and @ = in. In this case 
the normalized cutoff frequency is 52,/Q, = 0.444. As expected, the greatest 
reflection a t  x = 0 occurs for perfect tuning Q/Q, = 0. For 52/52, < 0.444, IR(x)12 
decays monotonically in x ;  for 52/52, > 0.444, IR(x)lz is oscillatory. For a fixed x, 
IRI2 decreases with increasing 52/52,. 

For the same incidence and topography angles 8 =  IT and @ = in, we plot on figure 
3 ( c )  the reflection coefficient a t  x = 0 as a function of Q/Q, and 0, L/C,, the latter 
characterizing the slope and extent of bed waves, and decreasing with the normalized 
water depth. In general IR(0)lz increases as Q, LIC, increases and Q/Q, decreases. 
Note that the main lobe of the reflection coefficient corresponds roughly to the 
subcritical region Q/Q0 < 0.5. It is evident from figure 3(c )  that the bed waves can 
serve as a very effective breakwater provided that tuning is good (Q/Q, < 0.5) and 
the patch of bed waves is wide (52, L/C ,  >, 1 ) .  

7. Normal incidence on a wide strip of bed waves 
7.1 .  The diflerential system 

We shall now extend the technique developed in $6.1 to solve the boundary-value 
problem for normal incidence. As a potential solution for (5.10),  let us consider a 
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detuned incident wave with periodic modulation in yl. Consequently, A ,  B, and B, 
are assumed to be of the following form : 

where 
cos a 
sin a 

and because of nearly normal incidence 

Q = C, K,. (7.3) 

S = R,+R, (7.41 

and D = R,-R,. (7.5) 

Let us define the sum and difference amplitude coefficients as follows: 

Upon substituting (7.1) in (5.10a-c) and making use of (7.4) and (7.5), we arrive at  
the following 3 x 3 matrix differential equation : 

where E is still given by (6.8), X and M are now 

x= [T, s, D]T, 

tan u tan @ 
52 

L o  -52, 

0 

Q 
- tan a tan @ 

Q 

Qo 

- 
Q, cos@ 

Use has been made of (7.1), (7.2) and 

(7.9) K,C, = Q- K2 - = Q t a n a .  
Kl 

Since ( k + c K , ,  cK2) is the actual wavenumber vector of the incident wave, non-zero 
K ,  means that a small angle of incidence is allowed. Alternatively, one may regard 
a as the direction of the incident envelope. 

7.2. The eigenvectors 
We follow the same procedure as in $6.1 and assume a homogeneous solution of the 
form (6.9). Equation (7.6) yields an eigenvalue problem similar to (6.10). The 
eigenvalue condition is now a cubic equation: 

A3--  ( I-- co:@)~z+[+ cos++(g)]  [&-tanla tanz@-- cos @ IA 
QO 

tan's tan*@ = 0. (7.10) 1 1 Q  
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t .3 

90 

1 .o 
FIGURE 3 (u, b ) .  For caption see facing page. 



Bragg scattering of waves by a doubly periodic seabed 65 

5.0 
FIQURE 3. ( a )  Cutoff frequency 9,/SZo as a function of 8 and $ in degrees. ( b )  IRI2 as a function of 
location x , /L  and detuning S Z / S Z , .  S Z ,  LJC,  = 2, incidence angle 19 = in, topography angle $ = in. 
Cutoff frequency is R,/SZ, = 0.444. (c )  (R(O)(' as a function of D / 9 ,  and 9, L/C,. B = in and 
$ = L  4n. 

The eigenvalues depend on three parameters : detuning factor !2/52,, bottom 
topography angle 1c. and incident envelope angle g ;  and they are found from (7.10) 
numerically. The results are displayed in the complex plane of ih. It is well known 
that a third-order polynomial equation with real coefficients has at least one real 
root, i.e. a t  least one of the eigenvectors will be purely oscillatory in 6.  The loci of the 
two other eigenvalues (ih,) are shown in figure 4 ( a ,  b )  for a given bottom and two 
different directions g of the incident envelope. Consider figure 4 (a )  with = 0. For 
small detuning, it is seen that ih is predominantly real, thus indicating a monotonic 
dependence on 6. However, as 52/52, increases, the imaginary part of ih slowly 
increases while its real part decreases to zero. If detuning is further increased, ih 
turns sharply after passing the origin and then follows the imaginary axis, implying 
an oscillatory behaviour in x. This turning point corresponds to the cutoff frequency. 
Larger detuning causes faster oscillations. While for g = 0 the locus has two flat 
horizontal branches below cutoff, corresponding to purely monotonic behaviour, for 
g = in, the locus displays two curved branches reaching the imaginary axis away 
from the origin, as seen in figure 4 ( b ) .  Thus the effect of g is to add an oscillatory 
behaviour to a monotonic trend. It is worth noting that, although successive points 
correspond to the same increment (d52/52, = 0.2), they are not evenly spaced in the 
vicinity of cutoff. Small variations in detuning induce large variations in the 
eigenvalues. 
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We easily obtain the eigenvector corresponding to hi: 

I 1 I I I :-a 2 1  -= 
+ a0 

(b) 

+ 
+ 
+ 

+ 

+ fr x 

‘“5 = 2 

+ X 

0 -  x n o  x x  -= 
i i a  a0 

*-04++ + .n,- 

I I I I I I I 

-(:-hi) & t ang  tan@ (i = 1, 2, 3). (7.11) 1 
Returning from [XI’ = [T, S, D]  to [ Y]’ = [T, R,, R,], we have 

YT = [bI i ,  b2i, b,J (i = 1, 2, 3), (7.12) 
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with 

cos $ 52, 

b 32 . = - 2 '(" --A. 0, .)[(:)(---&+tangtan$ 

( 7 . 1 3 ~ )  

(7.13 b) 

(7 .13~)  

The general solution of the matrix differential equation (7.6) is finally a linear 
combination of the three eigenmodes : 

where u l ,  v2 and v3 are coefficients still to be found through the application of 
boundary conditions. 

7.3. Solution to the boundary-value problem 

As before, we assume a finite patch in the normalized range 0 4 5 d 1 and - co < 
y < + CO. Continuity of pressure and normal velocity a t  6 = 0 and 6 = 1 requires 
that 

T(0)  = 1, R l ( l )  = R,(1) = 0. (7.15) 

Equation (7.1) yields the following set of non-homogeneous linear equations 

\ v , b 1 1 + v 2 b 1 2 + v 3 b 1 3  = 

The coefficient determinant can be written as 

1 5 2  
det =- -Atanc tan$ ,  

4 Qo 

with 

[' OcgL (4 + A3) ]  -(--+A.) 1 5 2  (E-A~) ( E - A ~ ) ( A ~ - A ~ )  exp 1 0  
cos $ 52, 

(7.17) 
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After some algebra we find 

v1 = P ( ~ - - A ~ )  2 ( g - A 3 ) ( A 2 - A 3 )  exp ( 7 . 1 9 ~ )  

v2 = -(g-A1) 2 ( : -A3)(A3--AJ 

A cos$ 52, 

A cos$ 52, 

and 

v3 = P ( ~ - A ~ )  2 ( E - A 2 ) ( A l - A 2 )  exp ( 7 . 1 9 ~ )  
A cos$ 52, 

The three amplitudes are now fully determined by (7.1) and (7.14). 

7.4. T h e  limit  of zero detuning 
When 52/52, = 0, the last row of the matrix M in (7.8) vanishes, hence D = 0. As a 
consequence, we can reduce (7.6) to 

(7.20) 

After solving the boundary-value problem, we find the reflected and transmitted 
wave amplitudes to be 

and T =  (7.21 b)  

7.5. Numerical results 
In  figure 5 ( a )  we show the reflection and transmission coefficients for a fixed bottom 
topography with 52, L/C, = 2, for a = 0 and in. For perfectly normal incidence 
(a = 0), the reflection is symmetrical, R,(O) = R2(0) .  Note that, for perfect tuning, the 
amplitude incidence angle does not affect the scattering coefficients and reflection is 
symmetrical about the x-axis, as expected. However, when u = in more reflection is 
directed towards positive y .  Although the sum (Rl(0)(2 and (R2(0)(2 is maximum for 
perfect tuning Q/Q, = 0, IR2(0)12 reaches a maximum for non-zero detuning 
(52/52, x 0.9). From figure 4(6), we can infer that the cutoff frequency lies around 0.9, 
Figure 5(a) shows very clearly, for r = in, how both ]R,(O)l and \T(l)j are neither 
purely oscillatory nor purely monotonic for 52/52, < 0.9, as should be expected from 
the eigenvalue loci. 

Consider now figure 5 ( b ) ,  where u = an. Change of topography from $ = Q to in 
induces drastic changes in R,, R, and T .  Finally, in figure 5 (c),  we let 52, L /Cg be 
increased to 3. Reflection is now greatly enhanced, while transmission is sharply 
decreased, especially below cutoff. The oscillatory behaviour above cutoff is evident. 
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Similar to the case of oblique incidence, the following energy identity relating the 
scattering coefficients can be derived (see Appendix C) : 

This conservation law has been used to check our numerical results. 

8. Doubly periodic array of hemispheroids 
To see the potential of doubly periodic structures as breakwaters, it  is necessary 

to examine configurations that can be mass produced and easily installed. Hemi- 
spheroids are probably the simplest of such configurations. Theoretically, the slope 
along the base is too large to be compatible with the approximation used here. It is 
however worthwhile to ignore this local inconsistency in order to have a crude 
estimation of the effectiveness of such structures. Because of periodicity in the short 
scales, the bed topography above the mean depth can be expanded as 

+ m  +LO 

&(x, y, xl, yl) = X X gDPq(zl, y,) eimpz einqy. (8.1) 
p--m q=-m 

Recall from (2.3) that €8 is the height of the structure. Note that m and n are 
wavenumbers and D,, can depend on the slow scales x1 and y,. Clearly, the resonant 
terms correspond to p = & 1 and q = k 1.  Again it suffices to consider D,, which 
corresponds to the circle G, in figure 1 .  

Consider a lattice of half-spheroids spaced in the x- and y-directions at distances 
2 and e respectively. Thus 

The physical height of each spheroid is ea and the radius of the circular base is a so 
9 = 27c/m, C = 2nln. (8.2) 

and is periodic over 2 by C rectangles. The Fourier coefficients are 

go,, Ye = I"" -39 d x r g d y 8 ( x ,  y) ePimx ePiny (8.4) 

or 

after transforming to polar coordinates. In  the inner integral 

9 = j'r dy eiua(mcosy+nsiny) 

the exponent can be written as 

2iuka sin$ sin ( y - 8 - b ) .  (8.7) 

z = 2uka sin& (8.8) Letting 

we get 

9 = J dy [cos ( z  sin (y-O-$)) + i sin ( z  sin (y-6-+p))].  (8.9) 
0 
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FIGURE 6. Relation between ka and the equivalent slope of the double sinusoid, kD,l. ( i )  B = 0, 
$ = in; (ii) B = 0,  y? = in and (iii) 0 = in, $ = in. 

Making use of the following formulae : 

W 

cos ( z  sin t )  = J,(z) + 2 Z J2,(z) cos 2jt, (8.10 a )  
j=1 

00 

sin(zsint) = 2 ZJ,j+,(z) sin(2j-l)t 
j-1 

and the orthogonality of trigonometric functions, we find 

9 = 2d0(2uku sin (h)). 
This enables us to evaluate Dll explicitly from (8.5) 

(8.10 b )  

(8.11) 

2 
D,, = mna3 - Q-%J;(Q) = -mna3Q&-3 (sin&-& cosQ), 

Q = 2ka sin (&) = - 2ka cos [!j(+ - @)I, 

(8.12) 

(8.13) 

(3" 7c 

where 

and, in view of (3.4), 

m = k ( c o s 8 + c o s ~ ) ,  n = k (sinB+sin@). (8.14) 

In  order to prevent neighbouring hemispheroids from contact, the normalized radius 
must satisfy 

ka < min ($2, t k e ) .  (8.15) 

The quantity skD,, can be regarded as the slope of the equivalent doubly sinusoidal 
seabed. Figure 6 shows the dependence of kD,, on the normalized radius of the 
circular base ka, for various incidence angles B and topography angles @. The vertical 
arrows represent the upper bounds of ka allowed by (8.15). Clearly, there is a 
optimum radius for which kD,, and hence the reflection is the greatest. The 
extremum is easily found to be a t  

(8.16) 
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which always satisfy (8.15). Although ka = O(l) ,  the small height of the structure ea 
implies that the volumes of both a half-spheroid and one period of the sinusoidal 
corrugation are comparable. Since half-spheroids are likely to be easier to install on 
a flat bottom, they can serve as an effective breakwater, if properly arranged. 

We thank the financial support of US Office of Naval Research, Ocean Engineering 
Division through Contract NOOO14-83K-0550, NR294095 and that of the US 
National Science Foundation through Grant (MSM8514919). This study was 
motivated by conversations between Dr Even Mehlum of Norwave, Oslo, and C. C. M. 
in 1985. 

Appendix A. Approximate equations for slowly varying mean depth 
Let the mean depth be h(xl, yl). The incident phase function reads 

Is+ = 4x1, y1)dx+ P(x1, YJdy-wt. (A 1) s r 
We consider a slowly varying, doubly sinusoidal topography defined as follows : 

Bragg resonance is still governed by one of equations (3.3). Solvability conditions 
at the second order lead finally to  the coupled equations. For general oblique inci- 
dence, one only needs to  add the term +A*Vl.C$ to  the left-hand side of equa- 
tions (4.5;) respectively. For nearly normal incidence, one needs to  add !jAV,.C,+ 
and $Bl,2 V1-C;l,, to  the left-hand side of ( 5 . 8 ~ - c )  respectively. 

Appendix B. Derivation of boundary conditions 
The expressions of the wave potential in the various regions are 

to the left of topography, x < 0;  

over the topography, 0 < x < LIE; 

ig 
w cosh kh 

els+ cosh IC(z + h) $ =--T ' 

to  the right of topography, x 2 L/e. Continuity of pressure implies that 
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Similarly, continuity of velocities reads 

q 5 < , x  = #,x a t x =  0;  q 5 , x  = $,,, a t x =  Lls. (B 4) 

(B 5a)  

Upon using (B l ) ,  we obtain 

(l-A(O))+C~s(e+cp) eikYsin(s*)(R-B(0)) = 0 cos ,g eikysinO 

and 

cos eik[Lcos61a+ysinOl (A(L)-T) +COS (B+cp) eik[Lcos(8+rp)1p+ysin(B~)IB(L) = 0. ( B  56) 

I n  order to satisfy (B 3a, b )  and (B 5a, b) for all y, we have to set the coefficient of 
all y-dependent exponentials to zero, leading to  

A(0)  = 1, R = B(0) (B 6a) 

and 

A ( L )  = T, B(L) = 0. 

Appendix C.  Energy conservation law for normal incidence 

with 
Following the procedure leading to (6.23), we obtain from (7.6) a similar result 

M T - M = ( l + + c o s $ )  (C 1 )  

Therefore we find 

where both left- and right-hand sides are real. To evaluate the right-hand side, we 
multiply both sides of the first row of (7.6) by (+ cos$S*+(Q/Q,)T*) to get 

(C 3) 
Taking only the real part, we find 

( $ ':)+i$(?.$+T%) = t i  cos$"--(TS*-ST*). Q L D  
c, a" 

$cos$ s*-+s- 

Since from the first row of (7.6) we can show that 

(S*f.8%) = lTSZ,(TS*-ST*) .Q,L a 

i t  follows from (C 4) that  



74 

Finally, upon combining (C 2) and (C 6), we obtain 
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d d 
- [t cos $b 1x1, - (1 + $ cos $b) ITl2] = - [$ cos ~ ( ISI2 + p l z )  - IT121 = 0 
d t  d t  

(C 7)  

Integrating (C 7) from [ = 0 to 6 = 1 and using the boundary conditions, we find 

+ cos y? (C 8) 

~ o s ~ ( ( I R ~ ~ ~ + I R ~ ~ ~ ) + I T ~ ~  = 1. (C 9) 

+ lDl2) + IT12 = 1.  

Upon expressing S and D in terms of R, and R,, we finally get 

This result states the conservation of energy flux in the x-direction. 
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